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Motivating Scenario W engineering

Mission: Targeting, authorization to launch weapon, damage assessment, clean up

@ Combination of forces, multiple countries (internal & external data networks)
@ Mix of automated and human decisions based on real-time feedback

@ Redundant systems, multiple levels of performance may acceptable

@ System is vulnerable to attacks both at physical & cyber resources

physical

resources

/
targeting information server

e satellite photos of the area

e map showing geographical features

e reports from recon units on the ground

UAV ground station server

e collects data from the UAV's

e imagery for target
confirmation and damage
assessment

network of

targeting service

e predict enemy troop locations
e Jocation of friendly troops

cyber resources

trust federation services
e trust-level of different entities

e information sharing based on trust-level
ARO MURI: Cyber Situation Awareness

cryptographic service
e secure video/audio connections
e internal/outside networks
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Key ingredients W engineering

Mission: Targeting, authorization to launch weapon, damage assessment, clean up

@ Combination of forces, multiple countries (internal & external data networks)
@ Mix of automated and human decisions based on real-time feedback

@ Redundant systems, multiple levels of performance may acceptable

@ System is vulnerable to attacks both at physical & cyber resources

Key ingredients
1. Mission is characterized by
¢ “spatial” pattern: which combination of resources are
required for success?
¢ “temporal” pattern: which resources are needed when?

ground taigetmg

2. Actors
ST(lllOn ln]‘orm 1
server server ¢ blue & red teams

@ opposite goals
I . Rules of engagement
. ¢ which actions are allowed?

crypro. rargeting @ what are the consequences of the actions?

service service 4. Information structure

e what information is available to take actions?

@ can one actor see the effect of the other’s actions?

trust. fed.
services
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Cyber Awareness Games W engineering

ground taigenng Mission: . .
s mnon i """"""" m form. 1. target information server (TIS) gathers data
UAV ground station server (GSS) gathers data

server

2. targeting service (TS) queries TIS and generates
l candidate target coordinates
I . human operator queries GSS for near-real-time imagery

server

W

crypto. rargeting 4. human operator operator either
service service accepts target or
trust f" - requests alternative coordinates (back to 2.)

services

10. allied ground forces complete clean up
11. end-of-mission confirmation received by command
center

Q at different points in time, different cyber-resources need to be available
@ some level of redundancy allows for a mission to be completed using
different configurations of resources
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Cyber Awareness Games W engineering

Actors & their Cyber actions:

7
ground targeting
inform.

Sf(lfl()ll i l f
rver Blue forces may...
server server y

¢ rate-limit:
constrain multiple connections from same IP
l I constrain overall rate of service responses

crypto. targeting ¢ confine:
service service enable/disable services or disallow new connections
tr mrfe . kill processes and/or de-authorize users
services ¢ re-instate:
reboot host
reinstall host OS to uncompromised state
Red forces may...
9 compromise: ¢ disable: ¢ degrade performance:
gain access to hosts disable services launch DOS attacks

tamper with data disable hosts compromise routing or transport
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ground

i vvvvvvvvvvvvv tai geting
smnon

mfor m.
server server Blue forces may...

¢ rate-limit:
constrain multiple connections from same IP
l I constrain overall rate of service responses

Actors & their Cyber actions:

crypto. targeting @ confine:

service service enable/disable services or disallow new connections
tr mrfe . kill processes and/or de-authorize users
services @ re-instate:

reboot host
reinstall host OS to uncompromised state

- a\
r{ @ Blue’s trade-off: turning off all services will guarantee that red cannot
| compromise cyber infrastructure, but will also prevent mission completion
¢ Detailed knowledge of the possible red actions cannot be assumed a-priori
(due to the potential for unknown vulnerabilities) port
Will provide estimates for mission success for different levels of unknown )
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Cyber Awareness Games
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ground

Sf(lfl()ll i
server server

Blue has access to
e service current availability
l I 9 alerts form packet sniffing systems

targeting Informatlon Structure: o o
inform. both sides only have a partial view of mission’s state

crypto. targeting (detection of known malware)

service service ¢ anomaly-based intrusion detection systems
tr mrje . (deviations from normal behavior)
services ¢ OS and network logs

but difficult to conclusively determine if
¢ a host has been compromised
¢ a re-instate measure succeeded at “cleaning” a host

Red may also have difficulties in determining if

¢ gained access to a ¢ succeed in preventing ¢ a previously compromised
real host or to a a key mission step host has been cleared
“sand-box”
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Cyber Awareness Games W engineering

gmqnd _ __ targeting Information structure:
station [ﬁ inform. both sides only have a partial view of mission’s state
server -

- server

/_- Blue has access to
N

Partial information is a crucial aspect of the problem

¢ Our estimates of the current “state” of the mission depend on
what we believe the adversary might have done in the past
— infinite belief recursion (I think, that she thinks, that I think, ...)

¢ No known solutions based on separation between estimation & control
(cannot independently estimate state & then decide best action)

¢ No known solutions using dynamic programming
(thus high complexity and inability to prune)

- J

Red may also have difficulties in determining if

¢ gained access to a ¢ succeed in preventing ¢ a previously compromised
real host or to a a key mission step host has been cleared
“sand-box”
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Matrix Game Abstraction # engineering

Two players: Each player selects a policy:
P1 - defender (minimizer) S1 - set of available policies for P1
P2 - attacker (maximizer) S2 - set of available policies for P2
N— R
——

All possible game outcomes can be encoded in a matrix (2D-array),
jointly indexed by the actions of the players

game outcome when
P1 selects|action i

P2 selects|action j Attention! To allow for dynamic
‘ partial information games, “policy”
g Pl‘s must be understood in a feedback
policy sense:

What will be my response to
each possible observation?

'

P2¢s policy policy : observations ~ actions
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Pure Security Policies ¥ engineering

Security level for P1 (minimizer): V := min max ajj guaranteed
i J performance level
N )
against any

for each own action,
consider worst

adversary regponse

pick best worst-case
(called security policy)

adversary’s choice

Security level for P2 (maximizer): V := maxmin a;;
J 1
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Pure Security Policies ¥ engineering

Security level for P1 (minimizer): V := min max a;; guaranteed
i J performance level
— .
against any

for each own action,
consider worst

adversary regponse

pick best worst-case
(called security policy)

adversary’s choice

Security level for P2 (maximizer): V := maxmin a;;
J 1

But ...

(Pure) security levels/policies can be very conservative -- implicitly assume
1. other player knows our policy ahead of time and
2. selects its response based on that knowledge
think R.P.S.
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Randomized Policies # engineering

Mixed policies = selecting policies randomly according to a carefully
chosen distributions (as opposed to always selecting fixed policy)

Mixed security level for P1 (minimizer): V := min max Ela;;]

Yy z

optimization over optimization over
probability probability
distribution y used to distribution z used to
select policy i select policy j

Mixed security level for P2 (minimizer): V := maxmin E[a,;]

z oy
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Randomized Policies

W engineering

Mixed policies = selecting policies randomly according to a carefully
chosen distributions (as opposed to always selecting fixed policy)

Mixed security level for P1 (minimizer): V := min max Ela;;]

Y z

optimization over optimization over
probability probability
distribution y used to distribution z used to
select policy i select policy j

Mixed security level for P2 (minimizer): V := maxmin E[a,,]

z oy

( )

¢ mixed security levels for both players always match (minmax Theorem)

V' := min max E[a;;] = max min E[a;;]
y oz z oy

@ non-conservative solutions — other player can “corner” us into the security level
without knowing our policy
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Two players: Each player selects a policy:
P1 - defender (minimizer) S1 - set of available policies for P1
P2 - attacker (maximizer) S2 - set of available policies for P2
N— I
——

All possible game outcomes can be encoded in a matrix (2D-array),
jointly indexed by the actions of the players

game outcome when Attention! To allow for dynamic
i P1 selects|action i partial information games,
P2 selects action j “policy” must be understood in a
‘ feedback sense:
aij .. Pi‘s What will be my response to
policy every possible observation?
@ huge # of possible choices

= ) - e for most interesting games, it
' is not feasible to even
P2*s policy construct the whole matrix
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Sampled Saddle Point (SSP) Algor. @ engineering

1. Each player randomly (and independently) selects a submatrix of the overall game

Z*

Player P1 in very large

Az games,

submatrices will
likely be non-

Yy A i
1 Player P2 overlapping

2. Each player solves its subgame (as if it were the whole game) and computes
¢ mixed security levels: V(A1) & V(A»)
¢ corresponding security policies: y*, z*

3. Players play their mixed security policies against each other

y*.




% UCSANTA BARBARA

Sampled Saddle Point (SSP) Algor. (4) engineering

1. Each player randomly (and independently) selects a submatrix of the overall game

Z*

Player P1 in very large

Az games,

submatrices will
likely be non-

Yy A i
1 Player P2 overlapping

2. Each player solves its subgame (as if it were the whole game) and computes
¢ mixed security levels: V(A1) & V(A»)
e corresponding security policies: y*, z*

3. Players play their mixed security policies against each other

- e N
Because of independent subsampling, a

player can now be unpleasantly surprised:

o By o [aij] > V(Al) + €
outcome larger than minimizer expected
y" based on its submatrix A; (by more than € )
\ J
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SSP Notions of Security (4) engineering

Probabilistic notion of security:
¢ probability of (unpleasant) surprises should be below a pre-specified bound
@ with more computational power, one can demand lower prob. of surprise

Definition: The SSP algorithm is € — secure for P1 (minimizer)

with confidence 1-0 if
P(Ey*yz* [aij] > V(Al) + 6) <4
— _

outcome larger than P1 expected
(by more than € )

Definition: The SSP algorithm is € — secure for P2 (maximizer)
with confidence 1-0 if
P(Ey»ﬁz* [aij] < V(AQ) - 6) <é
— __

outcome smaller than P2 expected
(by more than € )

Can we guarantee € — security for a pre-specified small probability of violation 6 ?

YES, provided that our sample is sufficiently rich!
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Game-independent Bounds ¥ engineering

Player P1

ms cols A2
n1 cols

A na cols
: mi cols Player P2

Theorem: The SSP algorithm is € = 0 — secure for P1 (minimizer)

with confidence 1-0, for 5 mine

ny
Conversely, to obtain desired confidence level 0, suffices to select

“fat” sampling for A,
o ne f
my 4 test more options for
opponent than own
(by appropriate ratio)

Proof utilizes results from the “scenario approach” to convex
optimization using randomized methods [Calafiori, Campi 2006-2009]

Game-indenendent Rouinde VW . __.:

Game-independent bounds
¢ valid for any game

Play ¢ independent of the size of the game

n1cols | Bounds on relative computation
Al A @ required size of my sample depends on
size of opponents’ sample
9 the more I search for a good solution (large m), the

more options need to consider for opponent (large n1)
Theorem: The SSP alg_ J

with confidence 1-0, for 5=

ming

ny
Conversely, to obtain desired confidence level 0, suffices to select
“fat” sampling for A,
o ne y
my 4 test more options for

opponent than own
(by appropriate ration)

Proof utilizes results from the “scenario approach” to convex
optimization using randomized methods [Calafiori, Campi 2006-2009]
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Case Study I[: Combinatorial Search @ engineering

¢ P1 hides a treasure in one of M possible locations in the plane
¢ P2 wants to find treasure in minimum time (chooses among M! possible paths)
¢ Classical example of protecting high-value information

For

@ M = 10 possible treasure locations (M! = 3.6 million paths)

¢ 99% confidence (0 =0.01)

¢ P1 and P2 considers all possible treasure locations (n2 = mi= 10)

P1 should sample
nomq

4]

to determine optimal hiding location

ny > = 10000 paths

However, a posteriori bounds can provide good
guarantees with much fewer samples

a

3 UC SANTA BARBARA

Case Study II: Dynamic Partial Inf. Game ( Y engineering

¢ Both players attempt to execute a mission,
g = the one that completes it first wins
U U .
¢ Mission:
\ >< - network with N mission-relevant computers

- players takeover computers in turns

- mission requires n computers to jointly
execute a program, but only a few subsets
of n computers can succeed

¢ Partial information:

- in “open” computers, both players can see if
other took over

- in “closed” computers, a player cannot see
if other already took over

think N=9, n=3, TTT
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Case Study II: Dynamic Partial Inf. Game (,; engineering

¢ Mission:
- network with N mission-relevant computers
- players take over computers in turns
- mission requires n computers to jointly
execute a program, but only a few subsets
of n computers can succeed
¢ Partial information:
- in “open” computers, both players can see if
other took over
in “closed” computers, a player cannot see
if other already took over

o06f

@ Not possible to guarantee victory

(for either player)
¢ First player has an advantage (= 50%wins)
= | ¢ Optimal strategy involves randomized
e choices
| o Wehave used SSP algorithm to construct
U I players with 1% confidence

prob. win — prob. lose
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The Value of a Decision Aid System @ engineering

Stage 1: 1 X hidden Stage 2: 1 X hidden Stage 3: 2 Xs hidden

N~ - {~—F -
5A §

000 o
> | < |

& W @

Q: What should O do?
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The Value of a Decision Aid System @ engineering

Stage 1: 1 X hidden Stage 2: 1 X hidden Stage 3: 2 Xs hidden

InN=9

computer
network it is
not too bad
to keep track
of these, but

it is much

harder for

large N.

5L

§—<
o
0 o Tre

“K

If there was a top-left X
other player would not
have hidden 2nd X

§

o 'X

Q: What should O do?

A: No point in top left,
X is there already.

Must play top middle

No longer possible to win,
draw is best bet.

The Value of a Decision Aid System
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In N = 9
p

Stage 1: 1 X hidden

Stage 2: 1 X hidden

§—<
°5<
Q¢

Stage 3: 2 Xs hidden

\/
Xz
@ "

O W hat chanld N A~

Project goal

n ¢ provide estimates of probability of mission success

1 9 help human operator sift through possible scenarios

1¢ but

d < no known solutions based on separation between estimation & control

— must first find optimal players and then deduce optimal estimates

.

large N.

draw is best bet.

J
No longer possible to win,
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Conclusion W engineering

@ Cyber security as two-player large-scale matrix games
@ SSP randomized algorithm provides probabilistic security guarantees

@ Game independent theoretical bounds
(in terms of relative computation of two players

Future work

@ Tools for machine-aided decision (estimates of state, future actions, graphical
interfaces, etc.)

@ Mid-game players

@ Uncertainty in other player’s knowledge

Technical details on SSP at http://www.ece.ucsb.edu/~hespanha/published/#10GameTheory




